2 resultados para type I Interferons

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The setting up of methodologies that reduce the size of ice crystals and reduce or inhibit the recrystalli- sation phenomena could have an extraordinary significance in the final quality of frozen products and consequently bring out new market opportunities. In this work, the effect of an antifreeze protein type I (AFP-I), by vacuum impregnation (VI), on frozen watercress was studied. The VI pressure, samples’ weight, Hunter Lab colour, scanning electron microscopy (SEM), and a wilting test were analysed in this work. The water intake of watercress samples augmented with vacuum pressure increase. The results also showed that, independently from the vacuum pressure used, the Lab colour parameters between raw and impregnated samples were maintained, showing no significant differences (P > 0.05). A VI of 58 kPa, during 5 min, allowed impregnating the AFP-I solution (0.01 mg ml-1) into the water- cress samples. The scanning electron microscopy (SEM) analysis showed the AFP-I impregnated frozen samples with better cell wall definition and rounded cell shape with smaller ice crystals compared with the control samples. The wilting test results corroborated that AFP-I is a valuable additive, since the leaves impregnated with AFP-I showed higher turgidity compared to the control samples. The present findings will help to better understand the effect of AFP-I, particularly, on frozen water- cress microstructure and its importance as valuable food additive in frozen foods and mainly in leafy vegetables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gonadotrophin-releasing hormone (GnRH) is the main neurohormone controlling gonadotrophin release in all vertebrates, and in teleost fish also of growth hormone and possibly of other adenohypophyseal hormones. Over 20 GnRHs have been identified in vertebrates and protochoordates and shown to bind cognate G-protein couple receptors (GnRHR). We have searched the puffer fish, Fugu rubripes, genome sequencing database, identified five GnRHR genes and proceeded to isolate the corresponding complementary DNAs in European sea bass, Dicentrachus labrax. Phylogenetic analysis clusters the European sea bass, puffer fish and all other vertebrate receptors into two main lineages corresponding to the mammalian type I and II receptors. The fish receptors could be subdivided in two GnRHR1 (A and B) and three GnRHR2 (A, B and C) subtypes. Amino acid sequence identity within receptor subtypes varies between 70 and 90% but only 50–55% among the two main lineages in fish. All European sea bass receptor mRNAs are expressed in the anterior and mid brain, and all but one are expressed in the pituitary gland. There is differential expression of the receptors in peripheral tissues related to reproduction (gonads), chemical senses (eye and olfactory epithelium) and osmoregulation (kidney and gill). This is the first report showing five GnRH receptors in a vertebrate species and the gene expression patterns support the concept that GnRH and GnRHRs play highly diverse functional roles in the regulation of cellular functions, besides the ‘‘classical’’ role of pituitary function regulation.